Investigating ACTIVITY Use before Lesson 3.1

TEXAS @HomeTutor classzone.com Keystrokes

> a.5, a.6, 2A.3.B. 2A.3.C

3.1 Solving Linear Systems Using Tables

MATERIALS • graphing calculator

QUESTION How can you solve a system of linear equations using a table?

An example of a *system of linear equations* in two variables *x* and *y* is the following:

y = 2x + 4 Equation 1 y = -3x + 44 Equation 2

A *solution* of a system of equations in two variables is an ordered pair (x, y) that is a solution of both equations. One way to solve a system is to use the *table* feature of a graphing calculator.

Solve a system

Use a table to solve the system of equations above.

STEP 1 Enter equations

Press Y = to enter the equations. Enter Equation 1 as y_1 and Equation 2 as y_2 .

STEP 2 Make a table

Set the starting *x*-value of the table to 0 and the step value to 1. Then use the *table* feature to make a table.

STEP 3 Find the solution

Scroll through the table until you find an *x*-value for which y_1 and y_2 are equal. The table shows $y_1 = y_2 = 20$ when x = 8.

The solution of the system is (8, 20).

DRAW CONCLUSIONS Use your observations to complete these exercises

Use a table to solve the system. If you are using a graphing calculator, you may need to first solve the equations in the system for *y* before entering them.

1. $y = 2x + 5$	2. $y = 4x + 1$	3. $y = 4x - 3$
y = -x + 2	y = 4x - 8	$y = \frac{3}{2}x + 2$
4. $8x - 4y = 16$	5. $6x - 2y = -2$	6. $x + y = 11$
-6x + 3y = 3	-3x - 7y = 17	-x - y = -11

7. Based on your results in Exercises 1–6, make a conjecture about the number of solutions a system of linear equations can have.