ABSOLUTE VALUE INEQUALITIES Graphing an absolute value inequality is similar to graphing a linear inequality, but the boundary is an absolute value graph.

EXAMPLE 5 Graph an absolute value inequality Graph y > -2|x-3| + 4 in a coordinate plane. **Solution** STEP 1 Graph the equation of the boundary, y = -2|x-3| + 4. Use a dashed line 3 + 4because the inequality symbol is >. 2 **STEP 2** Test the point (0, 0). Because (0, 0) is (0, 0)a solution of the inequality, shade the portion of the coordinate plane outside the absolute value graph. **GUIDED PRACTICE** for Examples 4 and 5

11. WHAT IF? Repeat the steps of Example 4 if each student group is allotted up to 420 MB of video space.

Graph the inequality in a coordinate plane.

12. $y \le |x-2| + 1$ **13.** $y \ge -|x+3| - 2$ **14.** y < 3|x-1| - 3

KEY

HOMEWORK

2.8 EXERCISES

on p. 133 for Exs. 7–20

Skill Practice 1. VOCABULARY Copy and complete: The graph of a linear inequality in two variables is a(n) ?. 2. WRITING *Compare* the graph of a linear inequality in two variables with the graph of a linear equation in two variables. **CHECKING SOLUTIONS** Tell whether the given ordered pairs are solutions of the **EXAMPLE 1** inequality. on p. 132 for Exs. 3–6 **3.** x > -7; (0, 10), (-8, -5) 4. $y \le -5x$; (3, 2), (-2, 1) 5. $y \ge -2x + 4$; (0, 4), (-1, 8) 6. 2x - y < 3; (0, 0), (2, -2) **GRAPHING INEQUALITIES** Graph the inequality in a coordinate plane. **EXAMPLES** 2 and 3

7. $x < 3$	8. $x \ge 6$	9. $y > -2$
10. $-2y \le 8$	11. $y \le -2x - 1$	12. $y < 3x + 3$
13. $y > \frac{3}{4}x + 1$	14. $y \ge -\frac{2}{3}x - 2$	15. $2x + y < 6$
16. $x + 4y > -12$	17. $3x - y \ge 1$	18. $2x + 5y \le -10$

= WORKED-OUT SOLUTIONS

on p. WS1 for Exs. 15, 25, and 45 = **TAKS PRACTICE AND REASONING** Exs. 21, 28, 39, 41, 46, 48, 50, and 51