Extension

Use aftier Lesson 2.7

Use Piecewise Functions

TEKS a.2, a.3, 2A.2.A

GOAL Evaluate, graph, and write piecewise functions.

Key Vocabulary - piecewise function - step function

A piecewise function is defined by at least two equations, each of which applies to a different part of the function's domain. One example of a piecewise function is the absolute value function $f(x)=|x|$, which can be defined by the equations $y=-x$ for $x<0$ and $y=x$ for $x \geq 0$. Another example is given below.

$$
g(x)= \begin{cases}2 x-1, & \text { if } x \leq 1 \\ 3 x+1, & \text { if } x>1\end{cases}
$$

The equation $y=2 x-1$ gives the value of $g(x)$ when x is less than or equal to 1 , and the equation $y=3 x+1$ gives the value of $g(x)$ when x is greater than 1.

EXAMPLE 1 Evaluate a piecewise function

Evaluate the function $g(x)$ above when (a) $x=1$ and (b) $x=5$.

Solution

a. $g(x)=2 x-1 \quad$ Because $1 \leq 1$, use first equation.
$g(1)=2(1)-1=1 \quad$ Substitute 1 for x and simplify.
b. $g(x)=3 x+1 \quad$ Because $5>1$, use second equation.
$g(5)=3(5)+1=16 \quad$ Substitute 5 for x and simplify.

EXAMPLE 2 Graph a piecewise function

Graph the function $f(x)=\left\{\begin{aligned}-\frac{3}{2} x-1, & \text { if } x<-2 \\ x+1, & \text { if }-2 \leq x \leq 1 \\ 3, & \text { if } x>1\end{aligned}\right.$

Solution

STEP 1 To the left of $x=-2$, graph $y=-\frac{3}{2} x-1$. Use an open dot at $(-2,2)$ because the equation $y=-\frac{3}{2} x-1$ does not apply when $x=-2$.

STEP 2 From $x=-2$ to $x=1$, inclusive, graph $y=x+1$. Use solid dots at $(-2,-1)$ and $(1,2)$ because the equation $y=x+1$
 applies to both $x=-2$ and $x=1$.

STEP 3 To the right of $x=1$, graph $y=3$. Use an open dot at $(1,3)$ because the equation $y=3$ does not apply when $x=1$.

