TRANSFORMATIONS OF ANY GRAPH You can perform transformations on the graph of *any* function *f* in the same way as for absolute value graphs.

KEY CO	NCEPT	For Your Notebook
Transfo	rmations of General Graphs	
The grap function	h of $y = a \cdot f(x - h) + k$ can be obta y = f(x) by performing these steps	ained from the graph of any
STEP 1	Stretch or shrink the graph of $y = a \neq 1$. If $ a > 1$, stretch the graph	f(x) vertically by a factor of $ a $ if ph. If $ a < 1$, shrink the graph.
STEP 2	Reflect the resulting graph from S	Step 1 in the <i>x</i> -axis if $a < 0$.
STEP 3	Translate the resulting graph from vertically <i>k</i> units.	n Step 2 horizontally <i>h</i> units and

EXAMPLE 5 Apply transformations to a graph

The graph of a function y = f(x) is shown. Sketch the graph of the given function.

- **a.** $y = 2 \cdot f(x)$
- **b.** y = -f(x + 2) + 1

Solution

a. The graph of $y = 2 \cdot f(x)$ is the graph of y = f(x) stretched vertically by a factor of 2. (There is no reflection or translation.) To draw the graph, multiply the *y*-coordinate of each labeled point on the graph of y = f(x) by 2 and connect their images.

(2, 3) (5, 3) (0, 0) 3 x

b. The graph of y = -f(x + 2) + 1 is the graph of y = f(x) reflected in the *x*-axis, then translated left 2 units and up 1 unit. To draw the graph, first reflect the labeled points and connect their images. Then translate and connect these points to form the final image.

GUIDED PRACTICE

ICE for Examples 4 and 5

4. WHAT IF? In Example 4, suppose the reference beam originates at (3, 0) and reflects off a mirror at (5, 4). Write an equation for the path of the beam.

Use the graph of y = f(x) from Example 5 to graph the given function.

5. $y = 0.5 \cdot f(x)$

6.
$$y = -f(x - 2) - 5$$

7. $y = 2 \cdot f(x+3) - 1$

AVOID ERRORS

In Example 5, part (b), the value of *h* is -2 because -f(x + 2) + 1 =-f(x - (-2)) + 1. Because -2 < 0, the horizontal translation is to the left.