EXAMPLE 1 Graph a function of the form $\boldsymbol{y}=|\boldsymbol{x}-\boldsymbol{h}|+\boldsymbol{k}$

Graph $y=|x+4|-2$. Compare the graph with the graph of $y=|x|$.

INTERPRET

 FUNCTIONSTo identify the vertex, rewrite the given function as $y=|x-(-4)|+(-2)$. So, $h=-4$ and $k=-2$. The vertex is $(-4,-2)$.

Solution

STEP 1 Identify and plot the vertex, $(h, k)=(-4,-2)$.

STEP 2 Plot another point on the graph, such as $(-2,0)$. Use symmetry to plot a third point, $(-6,0)$.

STEP 3 Connect the points with a V-shaped graph.

STEP 4 Compare with $y=|x|$. The graph of $y=|x+4|-2$ is the graph of $y=|x|$ translated down 2 units and left 4 units.

STRETCHES, SHRINKS, AND REFLECTIONS When $|a| \neq 1$, the graph of $y=a|x|$ is a vertical stretch or a vertical shrink of the graph of $y=|x|$, depending on whether $|a|$ is less than or greater than 1.

For $\|\boldsymbol{a}\|>1$	For $\|\boldsymbol{a}\|<1$
- The graph is vertically stretched, or elongated. - The graph of $y=a\|x\|$ is narrower than the graph of $y=\|x\|$.	- The graph is vertically shrunk, or compressed. - The graph of $y=a\|x\|$ is wider than the graph of $y=\|x\|$.

When $a=-1$, the graph of $y=a|x|$ is a reflection in the x-axis of the graph of $y=|x|$. When $a<0$ but $a \neq-1$, the graph of $y=a|x|$ is a vertical stretch or shrink with a reflection in the x-axis of the graph of $y=|x|$.

EXAMPLE 2 Graph functions of the form $\boldsymbol{y}=\boldsymbol{a}|\boldsymbol{x}|$

Graph (a) $y=\frac{1}{2}|x|$ and (b) $y=-3|x|$. Compare each graph with the graph of $y=|x|$.

Solution

a. The graph of $y=\frac{1}{2}|x|$ is the graph of $y=|x|$ vertically shrunk by a factor of $\frac{1}{2}$. The graph has vertex $(0,0)$ and passes through $(-4,2)$ and $(4,2)$.

b. The graph of $y=-3|x|$ is the graph of $y=|x|$ vertically stretched by a factor of 3 and then reflected in the x-axis. The graph has vertex $(0,0)$ and passes through $(-1,-3)$ and $(1,-3)$.

