27 Use Absolute Value Functions and Transformations

Before	You graphed and wrote linear functions.
Now	You will graph and write absolute value functions.
Why?	So you can model structures, as in Ex. 39.

Key Vocabulary

- absolute value function
- vertex of an absolute value graph
- transformation
- translation
- reflection

In Lesson 1.7, you learned that the absolute value of a real number x is defined as follows.

$$
|x|=\left\{\begin{array}{c}
x, \text { if } x \text { is positive } \\
0, \text { if } x=0 \\
-x, \text { if } x \text { is negative }
\end{array}\right.
$$

You can also define an absolute value function $f(x)=|x|$.

KEY CONCEPT

For Your Notebook

Parent Function for Absolute Value Functions

The parent function for the family of all absolute value functions is $f(x)=|x|$. The graph of $f(x)=|x|$ is V-shaped and is symmetric about the y-axis. So, for every point (x, y) on the graph, the point $(-x, y)$ is also on the graph.

To the left of $x=0$, the graph is given by the line $y=-x$.

To the right of $x=0$, the graph is given by the line $y=x$.

The highest or lowest point on the graph of an absolute value function is called the vertex. The vertex of the graph of $f(x)=|x|$ is $(0,0)$.

REVIEW GEOMETRY
For help with transformations, see p. 988.

TRANSLATIONS You can derive new absolute value functions from the parent function through transformations of the parent graph.

A transformation changes a graph's size, shape, position, or orientation. A translation is a transformation that shifts a graph horizontally and/or vertically, but does not change its size, shape, or orientation.
The graph of $y=|x-h|+k$ is the graph of $y=|x|$ translated h units horizontally and k units vertically, as shown in the diagram. The vertex of $y=|x-h|+k$ is (h, k).

