29. CHALLENGE Data from some countries in North America show a positive correlation between the average life expectancy in a country and the number of personal computers per capita in that country.
a. Make a conjecture about the reason for the positive correlation between life expectancy and number of personal computers per capita.
b. Is it reasonable to conclude from the data that giving residents of a country more personal computers will lengthen their lives? Explain.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

REVIEW

TAKS Preparation p. 66;

TAKS Workbook

REVIEW
Lesson 2.3;
TAKS Workbook
30. TAKS PRACTICE Ted is planting flowers in a rectangular garden. The length of the garden is 55 feet and the perimeter is 150 feet. What is the area of the garden? TAKS Obj. 10
(A) $900 \mathrm{ft}^{2}$
(B) $1100 \mathrm{ft}^{2}$
(C) $1800 \mathrm{ft}^{2}$
(D) $2025 \mathrm{ft}^{2}$
31. TAKS PRACTICE What is the y-intercept of the line shown? TAKS Obj. 3
(F) $-\frac{2}{3}$
(G) $\frac{2}{3}$
(H) 2
(J) 3

QUZ for Lessons 2.4-2.6

Write an equation of the line that satisfies the given conditions. (p. 98)

1. $m=-5, b=3$
2. $m=2, b=12$
3. $m=4$, passes through $(-3,6)$
4. passes through $(0,7)$ and $(-3,-2)$
5. $m=-7$, passes through $(1,-4)$
6. passes through $(-9,9)$ and $(-9,0)$

Write and graph a direct variation equation that has the given ordered pair as a solution. (p. 107)
7. $(1,2)$
8. $(-2,8)$
9. $(5,-16)$
10. $(12,4)$

The variables x and y vary directly. Write an equation that relates x and y. Then find y when $x=8$. (p. 107)
11. $x=4, y=12$
12. $x=-3, y=-8$
13. $x=40, y=-5$
14. $x=12, y=2$
15. CONCERT TICKETS The table shows the average price of a concert ticket to one of the top 50 musical touring acts for the years 1999-2004. Write an equation that approximates the best-fitting line for the data pairs (x, y). Use the equation to predict the average price of a ticket in 2010. (p. 113)

Years since 1999, x	0	1	2	3	4	5
Ticket price (dollars), y	38.56	44.80	46.69	50.81	51.81	58.71

