KEY CONCEPT

Approximating a Best-Fitting Line

STEP 1 Draw a scatter plot of the data.
STEP 2 Sketch the line that appears to follow most closely the trend given by the data points. There should be about as many points above the line as below it.

STEP 3 Choose two points on the line, and estimate the coordinates of each point. These points do not have to be original data points.
STEP 4 Write an equation of the line that passes through the two points from Step 3. This equation is a model for the data.

EXAMPLE 3 Approximate a best-fitting line

ALTERNATIVE-FUELED VEHICLES The table shows the number y (in thousands) of alternative-fueled vehicles in use in the United States x years after 1997. Approximate the best-fitting line for the data.

x	0	1	2	3	4	5	6	7
y	280	295	322	395	425	471	511	548

Solution

STEP 1 Draw a scatter plot of the data.
STEP 2 Sketch the line that appears to best fit the data. One possibility is shown.

STEP 3 Choose two points that appear to lie on the line. For the line shown, you might choose $(1,300)$, which is not an original data point, and $(7,548)$, which is an original data point.

STEP 4 Write an equation of the line. First find the slope using the points $(1,300)$ and $(7,548)$.

$$
m=\frac{548-300}{7-1}=\frac{248}{6} \approx 41.3
$$

Use point-slope form to write the equation. Choose $\left(x_{1}, y_{1}\right)=(1,300)$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-300 & =41.3(x-1) & & \text { Substitute for } m, x_{1}, \text { and } y_{1} . \\
y & \approx 41.3 x+259 & & \text { Simplify. }
\end{aligned}
$$

- An approximation of the best-fitting line is $y=41.3 x+259$.

[^0]
[^0]: AnimatedAlgebra at classzone.com

