CORRELATION COEFFICIENTS A correlation coefficient, denoted by r, is a number from -1 to 1 that measures how well a line fits a set of data pairs (x, y). If r is near 1 , the points lie close to a line with positive slope. If r is near -1 , the points lie close to a line with negative slope. If r is near 0 , the points do not lie close to any line.

$r=-1$	$r=0$	$r=1$
Points lie near line with a negative slope.	Points do not lie near any line.	Points lie near line with positive slope.

EXAMPLE 2 Estimate correlation coefficients

Tell whether the correlation coefficient for the data is closest to $\mathbf{- 1 ,} \mathbf{- 0 . 5}$, $0,0.5$, or 1 .
a.

b.

c.

Solution

a. The scatter plot shows a clear but fairly weak negative correlation. So, r is between 0 and -1 , but not too close to either one. The best estimate given is $r=-0.5$. (The actual value is $r \approx-0.46$.)
b. The scatter plot shows approximately no correlation. So, the best estimate given is $r=0$. (The actual value is $r \approx-0.02$.)
c. The scatter plot shows a strong positive correlation. So, the best estimate given is $r=1$. (The actual value is $r \approx 0.98$.)

GUIDED PRACTICE for Examples 1 and 2

For each scatter plot, (a) tell whether the data have a positive correlation, a negative correlation, or approximately no correlation, and (b) tell whether the correlation coefficient is closest to $-1,-0.5,0,0.5$, or 1 .
1.

2.

3.

BEST-FITTING LINES If the correlation coefficient for a set of data is near ± 1, the data can be reasonably modeled by a line. The best-fitting line is the line that lies as close as possible to all the data points. You can approximate a best-fitting line by graphing.

