EXAMPLE 3
on p. 108
for Exs. 31-34
30. TAKS REASONING Give an example of two real-life quantities that show direct variation. Explain your reasoning.

IDENTIFYING DIRECT VARIATION Tell whether the data in the table show direct variation. If so, write an equation relating x and y.
31.

x	3	6	9	12	15
y	-1	-2	-3	-4	-5

32.

x	1	2	3	4	5
y	7	9	11	13	15

33.

x	-5	-4	-3	-2	-1
y	20	16	12	8	4

34.

x	-8	-4	4	8	12
y	8	4	-4	-8	-12

35. ERROR ANALYSIS A student tried to determine whether the data pairs $(1,24)$, $(2,12),(3,8)$, and $(4,6)$ show direct variation. Describe and correct the error in the student's work.

$$
\left.\begin{array}{ll}
\begin{array}{l}
1 \cdot 24=24 \\
3 \cdot 8=24
\end{array} & 2 \cdot 12=24 \\
\text { Because the products xy are }
\end{array}\right\rangle
$$

36. REASONING Let $\left(x_{1}, y_{1}\right)$ be a solution, other than $(0,0)$, of a direct variation equation. Write a second direct variation equation whose graph is perpendicular to the graph of the first equation.
37. CHALLENGE Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be any two distinct solutions of a direct variation equation. Show that $\frac{x_{2}}{x_{1}}=\frac{y_{2}}{y_{1}}$.

PROBLEM SOLVING

EXAMPLE 2

on p. 108
for Exs. 38-40
38. SCUBA DIVING The time t it takes a diver to ascend safely to the surface varies directly with the depth d. It takes a minimum of 0.75 minute for a safe ascent from a depth of 45 feet. Write an equation that relates d and t. Then predict the minimum time for a safe ascent from a depth of 100 feet.
TEXAS @HomeTutor for problem solving help at classzone.com
39. WEATHER Hail 0.5 inch deep and weighing 1800 pounds covers a roof. The hail's weight w varies directly with its depth d. Write an equation that relates d and w. Then predict the weight on the roof of hail that is 1.75 inches deep.

```
TEXAS @HomeTutor
```

for problem solving help at classzone.com
40. TAKS REASONING Your weight M on Mars varies directly with your weight E on Earth. If you weigh 116 pounds on Earth, you would weigh 44 pounds on Mars. Which equation relates E and M ?
(A) $M=E-72$
(B) $44 M=116 E$
(C) $M=\frac{29}{11} E$
(D) $M=\frac{11}{29} E$

EXAMPLE 3
for Exs. 41-43
41. INTERNET DOWNLOADS The ordered pairs $(4.5,23),(7.8,40)$, and $(16.0,82)$ are in the form (s, t) where t represents the time (in seconds) needed to download an Internet file of size s (in megabytes). Tell whether the data show direct variation. If so, write an equation that relates s and t.

