PROBLEM SOLVING
WORKSHOP LESSON 2.4

Using Alternvalivevaniolo

Another Way to Solve Example 4, page 100

TEKS a.5, a. 6

MULTIPLE REPRESENTATIONS In Example 4 on page 100, you wrote an equation of a line through two given points by first writing the equation in point-slope form and then rewriting it in slope-intercept form. You can also write an equation of a line through two points by using the slope-intercept form to solve for the y-intercept.

PROBLEM

METHOD
Write an equation of the line that passes through $(5,-2)$ and $(2,10)$.

Solving for the \boldsymbol{y}-Intercept To write an equation of a line through two points, you can substitute the slope and the coordinates of one of the points into $y=m x+b$ and solve for the y-intercept b.

STEP 1 Find the slope of the line.

$$
m=\frac{10-(-2)}{2-5}=\frac{12}{-3}=-4
$$

STEP 2 Substitute the slope and the coordinates

$$
\begin{aligned}
y & =m x+b \\
-2 & =-4(5)+b
\end{aligned}
$$

of one point into the slope-intercept form.
Use the point $(5,-2)$.

$$
\begin{aligned}
-2 & =-20+b \\
18 & =b
\end{aligned}
$$

STEP 4 Substitute m and b into the

$$
y=-4 x+18
$$

slope-intercept form.

Practice

1. WIRITE AN EQUATION Use the method above to write an equation of the line that passes through $(2,15)$ and $(7,35)$.
2. FITNESS At a speed of 45 yards per minute, a 120 pound swimmer burns 420 calories per hour and a 172 pound swimmer burns 600 calories per hour. Use two different methods to write a linear equation that models the number of calories burned per hour as a function of a swimmer's weight.
3. SAFETY A motorist lights an emergency flare after having a flat tire. After burning for 6 minutes, the flare is 13 inches long. After burning for 20 minutes, it is 6 inches long. Use two different methods to write a linear equation that models the flare's length as a function of time.
4. SNOWFALL After 4 hours of snowfall, the snow depth is 8 inches. After 6 hours of snowfall, the snow depth is 9.5 inches. Use two different methods to write a linear equation that models the snow depth as a function of time.
5. ARCHAEOLOGY Ancient cities often rose in elevation through time as citizens built on top of accumulating rubble and debris. An archaeologist at a site dates artifacts from a depth of 54 feet as 3500 years old and artifacts from a depth of 26 feet as 2600 years old. Use two different methods to write a linear equation that models an artifact's age as a function of depth.
6. REASONING Suppose a line has slope m and passes through (x_{1}, y_{1}). Write an expression for the y-intercept b in terms of m, x_{1}, and y_{1}.
