Properties

Properties of Real Numbers

	Let <i>a</i> , <i>b</i> , and <i>c</i> be real numbers.	
	Addition	Multiplication
Closure Property (p. 3)	a + b is a real number.	<i>ab</i> is a real number.
Commutative Property (p. 3)	a + b = b + a	ab = ba
Associative Property (p. 3)	(a + b) + c = a + (b + c)	(ab)c = a(bc)
Identity Property (p. 3)	a + 0 = a, 0 + a = a	$a \cdot 1 = a, 1 \cdot a = a$
Inverse Property (p. 3)	a+(-a)=0	$a \cdot \frac{1}{a} = 1, a \neq 0$
Distributive Property (p. 3)	The distributive property involves both addition and multiplication: a(b + c) = ab + ac	
Zero Product Property (p. 253)	Let <i>A</i> and <i>B</i> be real numbers or algebraic expressions. If $AB = 0$, then $A = 0$ or $B = 0$.	

Properties of Matrices

	Let <i>A</i> , <i>B</i> , and <i>C</i> be matrices, and let <i>k</i> be a scalar.	
Associative Property of Addition (p. 188)	(A + B) + C = A + (B + C)	
Commutative Property of Addition (p. 188)	A + B = B + A	
Distributive Property of Addition (p. 188)	k(A+B) = kA + kB	
Distributive Property of Subtraction (p. 188)	k(A - B) = kA - kB	
Associative Property of Matrix Multiplication (p. 197)	(AB)C = A(BC)	
Left Distributive Property of Matrix Multiplication (p. 197)	A(B+C) = AB + AC	
Right Distributive Property of Matrix Multiplication (p. 197)	(A+B)C = AC + BC	
Associative Property of Scalar Multiplication (p. 197)	k(AB) = (kA)B = A(kB)	
Multiplicative Identity (p. 210)	An $n \times n$ matrix with 1's on the main diagonal and 0's elsewhere is an identity matrix, denoted <i>I</i> . For any $n \times n$ matrix <i>A</i> , $AI = IA = A$.	
Inverse Matrices (p. 210)	If the determinant of an $n \times n$ matrix A is nonzero, then A has an inverse, denoted A^{-1} , such that $AA^{-1} = A^{-1}A = I$.	

Properties of Exponents

	Let <i>a</i> and <i>b</i> be real numbers, and let <i>m</i> and <i>n</i> be integers.
Product of Powers Property (p. 330)	$a^m \cdot a^n = a^{m+n}$
Power of a Power Property (p. 330)	$(a^m)^n = a^{mn}$
Power of a Product Property (p. 330)	$(ab)^m = a^m b^m$
Negative Exponent Property (p. 330)	$a^{-m} = \frac{1}{a^m}, a \neq 0$
Zero Exponent Property (p. 330)	$a^0=1, a eq 0$
Quotient of Powers Property (p. 330)	$\frac{a^m}{a^n}=a^{m-n},a\neq 0$
Power of a Quotient Property (p. 330)	$\left(rac{a}{b} ight)^m=rac{a^m}{b^m},b eq 0$