Formulas from Geometry

Basic geometric figures	See pages 991–993 for area formulas for basic two-dimensional geometric figures.
Area of an equilateral triangle	Area = $\frac{\sqrt{3}}{4}s^2$ where <i>s</i> is the length of a side
Arc length and area of a sector	Arc length = $r\theta$ where r is the radius and θ is the radian measure of the central angle that intercepts the arc Area = $\frac{1}{2}r^2\theta$ $centralangle \theta$
Area of an ellipse	Area = πab where a and b are half the lengths of the major and minor axes of the ellipse
Volume and surface area of a right rectangular prism	Volume = ℓwh where ℓ is the length, w is the width, and h is the height Surface area = $2(\ell w + wh + \ell h)$
Volume and surface area of a right cylinder	Volume = $\pi r^2 h$ where <i>r</i> is the base radius and <i>h</i> is the height Lateral surface area = $2\pi rh$ Surface area = $2\pi r^2 + 2\pi rh$
Volume and surface area of a right regular pyramid	Volume = $\frac{1}{3}Bh$ where <i>B</i> is the area of the base and <i>h</i> is the height Lateral surface area = $\frac{1}{2}ns\ell$ where <i>n</i> is the number of sides of the base, <i>s</i> is the length of a side of the base, and ℓ is the slant height Surface area = $B + \frac{1}{2}ns\ell$
Volume and surface area of a right circular cone	Volume $=\frac{1}{3}\pi r^2 h$ where r is the base radius and h is the height Lateral surface area $= \pi r \ell$ where ℓ is the slant height Surface area $= \pi r^2 + \pi r \ell$
Volume and surface area of a sphere	Volume = $\frac{4}{3}\pi r^3$ where <i>r</i> is the radius Surface area = $4\pi r^2$