Formulas from Geometry

Basic geometric figures	See pages 991-993 for area formulas for basic two-dimensional geometric figures.		
Area of an equilateral triangle	Area $=\frac{\sqrt{3}}{4} s^{2}$ where s is the length of a side		
Arc length and area of a sector	Arc length $=r \theta$ where r is the radius and θ is the radian measure of the central angle that intercepts the arc Area $=\frac{1}{2} r^{2} \theta$		
Area of an ellipse	Area $=\pi a b$ where a and b are half the lengths of the major and minor axes of the ellipse		
Volume and surface area of a right rectangular prism	Volume $=\ell w h$ where ℓ is the length, w is the width, and h is the height Surface area $=2(\ell w+w h+\ell h)$		
Volume and surface area of a right cylinder	Volume $=\pi r^{2} h$ where r is the base radius and h is the height Lateral surface area $=2 \pi r h$ Surface area $=2 \pi r^{2}+2 \pi r h$		
Volume and surface area of a right circular cone	Volume $=\frac{1}{3} \pi r^{2} h$ where r is the base radius and h is the height Lateral surface area $=\pi r \ell$ where ℓ is the slant height Surface area $=\pi r^{2}+\pi r \ell$ of a sphere		
area of a right regular			
pyramid		\quad	Volume $=\frac{1}{3} B h$ where B is the area of the base and h is the height
:---			
Lateral surface area $=\frac{1}{2} n s \ell$ where n is the number			
of sides of the base, s is the length of a side of the			
base and ℓ is the slant height			
Surface area $=B+\frac{1}{2} n s \ell$,	Volume $=\frac{4}{3} \pi r^{3}$ where r is the radius	
:---			
Surface area $=4 \pi r^{2}$			

