## Formulas for Sequences and Series

| Formulas for sums of special series (p. 797) | $\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ |
| :---: | :---: |
| Explicit rule for an arithmetic sequence (p. 802) | The $n$th term of an arithmetic sequence with first term $a_{1}$ and common difference $d$ is: $a_{n}=a_{1}+(n-1) d$ |
| Sum of a finite arithmetic series (p. 804) | The sum of the first $n$ terms of an arithmetic series is: $S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)$ |
| Explicit rule for a geometric sequence (p. 810) | The $n$th term of a geometric sequence with first term $a_{1}$ and common ratio $r$ is: $a_{n}=a_{1} r^{n-1}$ |
| Sum of a finite geometric series (p. 812) | The sum of the first $n$ terms of a geometric series with common ratio $r \neq 1$ is: $S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)$ |
| Sum of an infinite geometric series (p. 821) | The sum of an infinite geometric series with first term $a_{1}$ and common ratio $r$ is $S=\frac{a_{1}}{1-r}$ <br> provided $\|r\|<1$. If $\|r\| \geq 1$, the series has no sum. |
| Recursive equation for an arithmetic sequence (p. 827) | $a_{n}=a_{n-1}+d$ where $d$ is the common difference |
| Recursive equation for a geometric sequence (p. 827) | $a_{n}=r \cdot a_{n-1}$ where $r$ is the common ratio |

## Formulas and Identities from Trigonometry

| Conversion between degrees and radians (p.860) | To rewrite a degree measure in radians, multiply by $\frac{\pi \text { radians }}{180^{\circ}}$. To rewrite a radian measure in degrees, multiply by $\frac{180^{\circ}}{\pi \text { radians }}$. |
| :---: | :---: |
| Definition of trigonometric functions (p. 866) | Let $\theta$ be an angle in standard position and $(x, y)$ be any point (except the origin) on the terminal side of $\theta$. Let $r=\sqrt{x^{2}+y^{2}}$. $\begin{array}{lll} \sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x}, x \neq 0 \\ \csc \theta=\frac{r}{y}, y \neq 0 & \sec \theta=\frac{r}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0 \end{array}$ |
| Law of sines (p. 882) | If $\triangle A B C$ has sides of length $a, b$, and $c$, then: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ |
| Area of a triangle (given two sides and the included angle) (p. 885) | If $\triangle A B C$ has sides of length $a, b$, and $c$, then its area is: $\text { Area }=\frac{1}{2} b c \sin A \quad \text { Area }=\frac{1}{2} a c \sin B \quad \text { Area }=\frac{1}{2} a b \sin C$ |

