Formulas from Probability

Theoretical probability of an event (p. 698)	When all outcomes are equally likely, the theoretical probability that an event A will occur is:
	$P(A) = \frac{1}{\text{Total number of outcomes}}$
Odds in favor of an event (p. 699)	When all outcomes are equally likely, the odds in favor of an event A are: Number of outcomes in A Number of outcomes not in A
Odds against an event	When all outcomes are equally likely, the odds against an event A are:
(p. 699)	$\frac{\text{Number of outcomes not in } A}{\text{Number of outcomes in } A}$
Experimental probability	When an experiment is performed that consists of a certain number of trials, the experimental probability of an event <i>A</i> is given by:
of an event (p. 700)	$P(A) = \frac{\text{Number of trials where } A \text{ occurs}}{\text{Total number of trials}}$
Probability of compound events (p. 707)	If <i>A</i> and <i>B</i> are any two events, then the probability of <i>A</i> or <i>B</i> is: P(A or B) = P(A) + P(B) - P(A and B)
	If <i>A</i> and <i>B</i> are disjoint events, then the probability of <i>A</i> or <i>B</i> is: P(A or B) = P(A) + P(B)
Probability of the complement	The probability of the complement of event <i>A</i> , denoted \overline{A} , is:
of an event (p. 709)	$P(\overline{A}) = 1 - P(A)$
Probability of independent	If <i>A</i> and <i>B</i> are independent, the probability that both <i>A</i> and <i>B</i> occur is:
events (p. 717)	$P(A \text{ and } B) = P(A) \cdot P(B)$
Probability of dependent	If <i>A</i> and <i>B</i> are dependent, the probability that both <i>A</i> and <i>B</i> occur is:
events (p. 718)	$P(A \text{ and } B) = P(A) \cdot P(B A)$
Binomial probabilities	For a binomial experiment consisting of <i>n</i> trials where the probability of success on each trial is <i>p</i> , the probability of exactly <i>k</i> successes is:
(p. 725)	$P(k \text{ successes}) = {}_{n}C_{k}p^{k}(1-p)^{n-k}$

Formulas from Statistics

Mean of a data set (p. 744)	$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$ where \overline{x} (read "x-bar") is the mean of the data x_1, x_2, \dots, x_n
Standard deviation of a data set (p. 745)	$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n}}$ where σ (read "sigma") is the standard deviation of the data x_1, x_2, \ldots, x_n
Areas under a normal curve (p. 757)	 A normal distribution with mean x̄ and standard deviation σ has these properties: The total area under the related normal curve is 1. About 68% of the area lies within 1 standard deviation of the mean. About 95% of the area lies within 2 standard deviations of the mean. About 99.7% of the area lies within 3 standard deviations of the mean.
<i>z</i> -score (p. 758)	$z = \frac{x - \overline{x}}{\sigma}$ where x is a data value, \overline{x} is the mean, and σ is the standard deviation