Formulas from Probability

Theoretical probability of an event (p. 698)	When all outcomes are equally likely, the theoretical probability that an event A will occur is: $P(A)=\frac{\text { Number of outcomes in } A}{\text { Total number of outcomes }}$
Odds in favor of an event (p. 699)	When all outcomes are equally likely, the odds in favor of an event A are: Number of outcomes in A Number of outcomes not in A
Odds against an event (p. 699)	When all outcomes are equally likely, the odds against an event A are: Number of outcomes not in A Number of outcomes in A
Experimental probability of an event (p. 700)	When an experiment is performed that consists of a certain number of trials, the experimental probability of an event A is given by: $P(A)=\frac{\text { Number of trials where } A \text { occurs }}{\text { Total number of trials }}$
Probability of compound events (p. 707)	If A and B are any two events, then the probability of A or B is: $P(A$ or $B)=P(A)+P(B)-P P(A$ and $B)$
If A and B are disjoint events, then the probability of A or B is:	
$P(A$ or $B)=P(A)+P(B)$	

Formulas from Statistics

Mean of a data set (p. 744)	$\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$ where $\bar{x}\left(\right.$ read "x-bar") is the mean of the data $x_{1}, x_{2}, \ldots, x_{n}$
Standard deviation of a data set (p. 745)	$\sigma=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{n}-\bar{x}\right)^{2}}{n}}$ deviation of the data $x_{1}, x_{2}, \ldots, x_{n}$
where σ (read "sigma") is the standard	
Areas under a normal curve (p. 757)	A normal distribution with mean \bar{x} and standard deviation σ has these properties: - The total area under the related normal curve is 1. - About 68% of the area lies within 1 standard deviation of the mean. - About 95% of the area lies within 2 standard deviations of the mean. - About 99.7% of the area lies within 3 standard deviations of the mean.
z-score (p. 758)	$z=\frac{x-\bar{x}}{\sigma}$ where x is a data value, \bar{x} is the mean, and σ is the standard deviation

