Formulas and Theorems from Algebra (continued)

Discriminant of a general second-degree equation (p. 653)	Any conic can be described by a general second-degree equation in x and $y: Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. The expression $B^2 - 4AC$ is the discriminant of the conic equation and can be used to identify it.	
	Discriminant	Type of Conic
	$B^2 - 4AC < 0, B = 0, \text{ and } A = C$	Circle
	$B^2 - 4AC < 0$, and either $B \neq 0$ or $A \neq C$	Ellipse
	$B^2 - 4AC = 0$	Parabola
	$B^2 - 4AC > 0$	Hyperbola
	If $B = 0$, each axis of the conic is horizontal or vertice	cal.

Formulas from Combinatorics

Fundamental counting principle (p. 682)	If one event can occur in m ways and another event can occur in n ways, then the number of ways that both events can occur is $m \cdot n$.	
Permutations of <i>n</i> objects taken <i>r</i> at a time (p. 685)	The number of permutations of <i>r</i> objects taken from a group of <i>n</i> distinct objects is denoted by $_{n}P_{r}$ and is given by: $_{n}P_{r} = \frac{n!}{(n-r)!}$	
Permutations with repetition (p. 685)	The number of distinguishable permutations of <i>n</i> objects where one object is repeated s_1 times, another is repeated s_2 times, and so on is: $\frac{n!}{s_1! \cdot s_2! \cdot \ldots \cdot s_k!}$	
Combinations of <i>n</i> objects taken <i>r</i> at a time (p. 690)	The number of combinations of <i>r</i> objects taken from a group of <i>n</i> distinct objects is denoted by ${}_{n}C_{r}$ and is given by: ${}_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$	
Pascal's triangle (p. 692)	If you arrange the values of $_{n}C_{r}$ in a triangular pattern in which each row corresponds to a value of n , you get what is called Pascal's triangle. $_{0}C_{0}$ 1 $_{1}C_{0}$ $_{1}C_{1}$ 1 1 $_{2}C_{0}$ $_{2}C_{1}$ $_{2}C_{2}$ 1 2 1 $_{3}C_{0}$ $_{3}C_{1}$ $_{3}C_{2}$ $_{3}C_{3}$ 1 3 3 1 $_{4}C_{0}$ $_{4}C_{1}$ $_{4}C_{2}$ $_{4}C_{3}$ $_{4}C_{4}$ 1 4 6 4 1 The first and last numbers in each row are 1. Every number other than 1 is the sum of the closest two numbers in the row directly above it.	
Binomial theorem (p. 693)	The binomial expansion of $(a + b)^n$ for any positive integer n is: $(a + b)^n = {}_nC_0a^nb^0 + {}_nC_1a^{n-1}b^1 + {}_nC_2a^{n-2}b^2 + \dots + {}_nC_na^0b^n$ $= \sum_{r=0}^n {}_nC_ra^{n-r}b^r$	