Formulas

Formulas from Coordinate Geometry

Slope of a line (p. 82)	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ where m is the slope of the nonvertical line through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	
Parallel and perpendicular lines (p. 84)	If line l_{1} has slope m_{1} and line l_{2} has slope m_{2}, then: $l_{1} \\| l_{2}$ if and only if $m_{1}=m_{2}$ $l_{1} \perp l_{2}$ if and only if $m_{1}=-\frac{1}{m_{2}}$, or $m_{1} m_{2}=-1$	
Distance formula (p. 615)	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ where d is the distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	
Midpoint formula (p. 615)	$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ is the midpoint of the line segment joining	
points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.		

Formulas from Matrix Algebra

Determinant of a 2×2 matrix (p. 203)	$\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left\|\begin{array}{ll}a & b \\ c & d\end{array}\right\|=a d-c b$
Determinant of a 3×3 matrix (p. 203)	$\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left\|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right\|=(a e i+h f g+c d h)-(g e c+h f a+i d b)$
Area of a triangle (p. 204)	The area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is given by $\text { Area }= \pm \frac{1}{2}\left\|\begin{array}{lll} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array}\right\|$ where the appropriate sign (\pm) should be chosen to yield a positive value.
$\begin{aligned} & \text { Cramer's rule } \\ & \text { (p. 205) } \end{aligned}$	Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \begin{gathered}\text { be the coefficient matrix of this linear system: } \\ a x+b y=e\end{gathered}$ $\begin{aligned} & a x+b y=e \\ & c x+d y=f \end{aligned}$ If $\operatorname{det} A \neq 0$, then the system has exactly one solution. The solution is $x=\frac{\left\|\begin{array}{ll}e & b \\ f & d\end{array}\right\|}{\operatorname{det} A}$ and $y=\frac{\left\|\begin{array}{ll}a & e \\ c & f\end{array}\right\|}{\operatorname{det} A}$.
Inverse of a 2×2 matrix (p. 210)	The inverse of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $A^{-1}=\frac{1}{\|A\|}\left[\begin{array}{rr} d & -b \\ -c & a \end{array}\right]=\frac{1}{a d-c b}\left[\begin{array}{rr} d & -b \\ -c & a \end{array}\right] \text { provided } a d-c b \neq 0 .$

