Chapter 10

10.1 For the given password configuration, determine how many passwords are possible if (a) digits and letters can be repeated, and (b) digits and letters cannot be repeated.

1. 8 digits	2. 8 letters
3. 5 letters followed by 1 digit	4. 2 digits followed by 2 letters
10.1 Find the number of permutations.	

5. ${}_{5}P_{2}$ **6.** ${}_{6}P_{1}$ **7.** ${}_{9}P_{9}$ **8.** ${}_{12}P_{4}$

- 10.1 Find the number of distinguishable permutations of the letters in the word.
 9. VANILLA
 10. CHOCOLATE
 11. STRAWBERRY
 12. COFFEE
- **10.2** Find the number of combinations.

13. $_7C_3$ **14.** $_4C_1$ **15.** $_{10}C_9$ **16.** $_{15}C_6$

10.2 Use the binomial theorem to write the binomial expansion.

17. $(x-3)^3$ **18.** $(2x+3y)^4$ **19.** $(p^2+4)^5$ **20.** $(x^3+y^2)^6$

10.3 You have an equally likely chance of choosing any integer from 1 through 25. Find the probability of the given event.

21. An odd number is chosen.

22. A multiple of 3 is chosen.


10.3 Find the probability that a dart thrown at the given target will hit the shaded region. Assume the dart is equally likely to hit any point inside the target.

24.

28. P(A) = 0.7, P(B) = 0.21

10.4 Events *A* and *B* are disjoint. Find *P*(*A* or *B*).

26. P(A) = 0.4, P(B) = 0.15 **27.** P(A) = 0.3, P(B) = 0.5

10.4 Find the indicated probability. State whether *A* and *B* are disjoint events.

29. $P(A) = 0.25$	30. $P(A) = 0.52$	31. $P(A) = 0.54$	32. $P(A) = 0.5$
P(B) = 0.55	P(B) = 0.15	P(B) = 0.28	P(B) = 0.4
$P(A \text{ or } B) = \underline{?}$	P(A or B) = 0.67	P(A or B) = 0.65	$P(A \text{ or } B) = \underline{?}$
P(A and B) = 0.2	$P(A \text{ and } B) = \underline{?}$	$P(A \text{ and } B) = \underline{?}$	P(A and B) = 0.3

10.5 Find the probability of drawing the given cards from a standard deck of 52 cards (a) with replacement and (b) without replacement.

33. A jack, then a 3 **34.** A club, then another club **35.** A black ace, then a red card

10.6	Calculate the probability of tossing a coin 15 times and getting the given	
	number of heads.	

36. 1	37. 4	38. 7	39. 15