Logical Argument

A logical argument has two given statements, called premises, and a statement, called a conclusion, that follows from the premises. Below is an example.

Premise 1 If a triangle has a right angle, then it is a right triangle.
Premise 2 In $\triangle A B C, \angle B$ is a right angle.
Conclusion $\triangle A B C$ is a right triangle.
Letters are often used to represent the statements of a logical argument and to write a pattern for the argument. The table below gives five types of logical arguments. In the examples, p, q, and r represent the following statements.
p : a figure is a square $\quad q$: a figure is a rectangle $\quad r$: a figure is a parallelogram

Type of Argument	Patterin	Example
Direct Argument	If p is true, then q is true. p is true. Therefore, q is true.	If $A B C D$ is a square, then it is a rectangle. $A B C D$ is a square. Therefore, $A B C D$ is a rectangle.
Indirect Argument	If p is true, then q is true. q is not true. Therefore, p is not true.	If $A B C D$ is a square, then it is a rectangle. $A B C D$ is not a rectangle. Therefore, $A B C D$ is not a square.
Chain Rule	If p is true, then q is true. If q is true, then r is true. Therefore, if p, then r.	If $A B C D$ is a square, then it is a rectangle. If $A B C D$ is a rectangle, then it is a parallelogram. Therefore, if $A B C D$ is a square, then it is a parallelogram.
Or Rule	p is true or q is true. p is not true.	$A B C D$ is a square or a rectangle. Therefore, q is true.
Therefore, $A B C D$ is a rectangle.		

An argument that follows one of these patterns correctly has a valid conclusion.

EXAMPLE

State whether the conclusion is valid or invalid. If the conclusion is valid, name the type of logical argument used.
a. If it is raining at noon, Peter's family will not have a picnic lunch. Peter's family had a picnic lunch. Therefore, it was not raining at noon.

- The conclusion is valid. This is an example of indirect argument.
b. If a triangle is equilateral, then it is an acute triangle. Triangle $X Y Z$ is an acute triangle. Therefore, triangle $X Y Z$ is equilateral.
- The conclusion is invalid.
c. If $x=4$, then $2 x-7=1$. If $2 x-7=1$, then $2 x=8 . x=4$. Therefore, if $x=4$, then $2 x=8$.
- The conclusion is valid. This is an example of the chain rule.
d. If it is at least $80^{\circ} \mathrm{F}$ outside today, you will go swimming. It is $85^{\circ} \mathrm{F}$ outside today. Therefore, you will go swimming.
- The conclusion is valid. This is an example of direct argument.

