2 Evaluate and Strain Algebraic Expressions

a.1, a.2, 2A.2.A, A.4.B

> You studied properties of real numbers. You will evaluate and simplify expressions involving real numbers. So you can estimate calorie use, as in Ex. 60.

Key Vocabulary

- power
- variable
- term
- coefficient
- identity

A **numerical expression** consists of numbers, operations, and grouping symbols. An expression formed by repeated multiplication of the same factor is a **power**.

A power has two parts: an *exponent* and a *base*. The **exponent** represents the number of times the **base** is used as a factor. In the power shown below, the base 7 is used as a factor 3 times.

You do not usually write the exponent when it is 1. For instance, you can write 8¹ simply as 8.

EXAMPLE 1 Evaluate powers
a.
$$(-5)^4 = (-5) \cdot (-5) \cdot (-5) \cdot (-5) = 625$$

b. $-5^4 = -(5 \cdot 5 \cdot 5 \cdot 5) = -625$

In Example 1, notice how parentheses are used in part (a) to indicate that the base is -5. In part (b), the base of the power is 5, not -5. An order of operations helps avoid confusion when evaluating expressions.

KEY CONCEPT		For Your Notebook
Order of Operations		
0 0 0	Steps	Example
STEP 1	First , do operations that occur within grouping symbols.	$1 + 7^2 \cdot (5 - 3)$
STEP 2	Next, evaluate powers.	$= 1 + 7^2 \cdot 2$
STEP 3	Then , do multiplications and divisions from left to right.	$= 1 + \mathbf{49 \cdot 2}$
STEP 4	Finally , do additions and subtractions from left to right.	= 1 + 98 = 99