

Key Vocabulary A numerical expression consists of numbers, operations, and grouping symbols.

- power
- variable
- term
- coefficient
- identity An expression formed by repeated multiplication of the same factor is a power.

A power has two parts: an exponent and a base. The exponent represents the number of times the base is used as a factor. In the power shown below, the base 7 is used as a factor 3 times.

You do not usually write the exponent when it is 1 . For instance, you can write 8^{1} simply as 8 .

EXAMPLE 1 Evaluate powers

a. $(-5)^{4}=(-5) \cdot(-5) \cdot(-5) \cdot(-5)=625$
b. $-5^{4}=-(5 \cdot 5 \cdot 5 \cdot 5)=-625$

In Example 1, notice how parentheses are used in part (a) to indicate that the base is -5 . In part (b), the base of the power is 5 , not -5 . An order of operations helps avoid confusion when evaluating expressions.

KEY CONCEPT
 For Your Notebook

Order of Operations

Steps

STEP 1 First, do operations that occur within grouping symbols.

STEP 2 Next, evaluate powers.

STEP 3 Then, do multiplications and divisions from left to right.

STEP 4 Finally, do additions and subtractions from left to right.

Example

$$
1+7^{2} \cdot(5-3)
$$

$$
=1+7^{2} \cdot 2
$$

$$
=1+49 \cdot 2
$$

$$
=1+98
$$

$$
\text { = } 99
$$

